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AN ASYMPTOTIC SOLUTION TO THE MEMBRANE
EQUATIONS FOR SHELLS OF REVOLUTION OF

NEGATIVE GAUSSIAN CURVATURE

W. A. DAY*

Mathematics Division, National Physical Laboratory, Teddington, England

Abstract-This paper examines the membrane theory of the equilibrium of an elastic shell of revolution of
negative Gaussian curvature, with a free edge and subject to a normal loading p.(~) cos nlJ, where IJ is the
meridional angle, ~ is an angular parameter along meridian lines and n is an integer. The asymptotic dependence
upon n, as n ..... 00, of the stress resultants at a fixed point of the shell is determined analytically to provide a basis of
comparison with the full bending theory. The particular case of the single sheet hyperboloid is examined in detail.

1. INTRODUCTION

ANALYSIS ofthe stresses in an elastic shell of revolution has important engineering applica­
tions, a particular example being the construction of concrete cooling towers in the shape
of single sheet hyperboloids. It is well known [1] that the equilibrium of an elastic shell is
described by an eighth order system of linear partial differential equations but it is a con­
siderable task to solve boundary value problems for this system, Consequently approximate
methods are often used to obtain solutions for engineering design purposes, One of the most
common approximations-the membrane approximation-ignores the couple resultants
altogether and by so doing leads to a second order system oflinear equations. The reduction
in order, from eighth to second, necessarily results in the loss of boundary conditions but
the hope is that, away from certain narrow "boundary layers" where bending effects are
needed to satisfy the "lost" boundary conditions, the membrane description is adequate.

Recently solutions of the full eighth order system and the second order membrane
system have been compared [2] for hyperboloids of revolution with one edge free and one
edge clamped and subjected to normal wind loadings of the form

LPn(cf»cos nO,

where 0 is the meridional angle, cf> is an angular parameter along meridian lines and n is
an integer. The linearity of the equations and the homogeneity of the boundary conditions
together imply that the state of stress is a superposition of the stresses due to each separate
harmonic Pn(cf» cos nO of the loading, It was found that for a normal loading Pn(cf» cos nO
and "small" values of n the bending and membrane theories are in good agreement but that
for sufficiently large values ofn the two solutions are markedly dissimilar and the membrane
approximation cannot then be considered adequate. This conclusion is, perhaps, not
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surprising in view of the fact that the couple resultants, which might be expected to play an
important role for large n, are neglected by the membrane theory. However, the precise
asymptotic behaviours of the bending and membrane solutions for large n and the way in
which they differ are not so obvious.

In this paper the behaviour of the second order membrane system is examined analy­
tically for shells having a free edge. A normal loading Pn(¢) cos nO is assumed and the
asymptotic dependence of the solution upon the harmonic number n as n -> 00 is deter­
mined firstly for a hyperboloid of revolution, which introduces certain simplifying features,
and secondly for a general shell of revolution of negative Gaussian curvature. The asymp­
totic expansion derived for the hyperboloid is shown to give excellent agreement with the
results of a direct numerical solution of the differential equations. The expansion confirms
that, on the membrane theory, the stress resultants at a fixed point of the hyperboloid do
not approach a limiting value as n -> 00 but oscillate between two fixed values. In contrast
the calculations in [2] indicate that on the bending theory the stress resultants approach
the value zero as a limit. The analysis for the general shell shows that the oscillatory
asymptotic behaviour of the membrane solution is not particular to the hyperboloid but
characterizes the solution for any shell of revolution of negative Gaussian curvature.

2. FORMULATION OF THE PROBLEM

We take a system of rectangular Cartesian coordinates (x, y, z) and suppose the middle
surface of the shell generated by revolving the arc

x = x(¢) > 0, z = z(¢), (2.1)

about the z-axis. The parameter ¢ is defined as follows: if Q(¢) is a point of the arc then ¢
is the angle which the normal to the arc at Q makes with the positive direction of the z-axis.
It is assumed that

(2.2)

for all ¢ in ¢o :s; ¢ :s; ¢ I so that the surface of revolution then has negative Gaussian
curvature. The free edge of the shell can, without essential loss of generality, be taken to
be the circle ¢ = ¢o'

The membrane equations of equilibrium for the stress resultants N"', No, N"'0 = No",
have been given by Timoshenko and Woinowsky-Krieger [3]. They are

C. cN",o
o¢ ('2 sm ¢N",) + 'I ---ao--'I cos ¢No = °
a. cNo

o¢('2 sm ¢N",0)+'1 c¢ +'lcos¢N",o = °
'2 N", + 'IN0+ '1'2Pn cos nO = 0,

(2.3)

where' I (¢), , 2(¢) are the principal radii of curvature of the shell. The boundary conditions
at the free edge are

(2.4)
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It can be verified that the characteristic equation of the system of two first order equa­
tions for N.p and N .po, which are obtained by eliminating No, is

r tr2 dcJ>2 + r~ sin2cJ> de2 = O. (2.5)

Moreover, the assumption (2.2) implies that the shell has negative Gaussian curvature,
that is to say

(2.6)

for all ¢ in ¢o ~ ¢ ~ ¢ t. Consequently the system has real distinct characteristics and is
hyperbolic. The form of the conditions (2.4) implies that we have to solve an initial value
problem and the hyperbolic character of the equations then ensures that this problem is
well posed.

To solve (2.3) we write

(2.7)

(2.8)

Substituting from (2.7) into (2.3) and eliminating N.pon, Non produces a second order ordin­
ary differential equation for N.pn of the form

d
2
N.pn dNq,n (-n 2

't'2 ) n2ri
d-l,2 + ft(¢)-d-l, + 2' 2-1,+ fi¢) N.pn = . 2¢ Pn+ f3(¢),

'I' '1" 2 sm 'I' , 2 sm

whereftJ2 are determined by 't,'2 alone andf3 is determined by 't, T2 and the prescribed
Pn . The conditions (2.4) become

(2.9)

Our objective is to determine the asymptotic behaviour of N q,n(cJ» as n--HX) for sufficiently
smooth 't(¢), T2(¢), Pi¢) subject only to the condition (2.6).

3. THE HYPERBOLOID

For the particular case ofthe hyperboloid of revolution it is simpler to take advantage
of a transformation described by Martin and Scriven [4] rather than use equations (2.8),
(2.9) directly.

We consider the hyperboloid obtained by revolving the arc

x 2/a2_z2/b2 = 1,- x ~ 0 (3.1)

about the z axis. A convenient parametric representation of the hyperboloid is

x = a sec t cos e, Y = a sec t sin e, z = - b tan t, (3.2)

where the parameter t is related to ¢ by the formulae

a(t) sin ¢ = b sec t, (l(2(t) d¢/dt = -ab sec t, (3.3)

the function (l( being defined by

a(t) = (a2 tan2t + b2 sec2t)t. (3.4)
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Considered as functions of t, the principal radii of curvature are

rdt) = -a3(t)/ab,

On making the transformation

a(t)
N cPn(t) = --2-R n(t)·

a sec t

we find that equation (2.8) reduces to the equation

d2Rn 2 _ n2a2 sec2
t _ a2 i( sin t p)

d 2 +n Rn - b Pn b d 3 nt t cos t

and the conditions (2.9) to the conditions

(3.5)

(3.6)

(3.7)

(3.8)

where a(to) sin 4>0 = b sec to' The function Rn can be determined immediately from equa­
tions (3.7) and (3.8) in the form

(3.9)

where Sn(t) satisfies the equation

d 2Sn 2
d(2+n Sn

= T(t), say,

together with the initial conditions

dSn(to) = 0
dt .

(3.10)

(3.11)

The homogeneity of the initial conditions (3.11) now enables us to express the solution of
(3.10) in the form

1JtSn(t) = ~ T(t') sin n (t - t')dt'.
to

(3.12)

An asymptotic expansion for Sn' and hence for Rn, valid as n -+ 00 can be deduced by
expanding the integral (3.12) by parts and using the Riemann-Lebesgue Lemma [5]
namely, that provided the function g is integrable

lim ft g(t') sin n t' dt' = lim ft g(t') cos n t' dt' = O.
n-+oo 10 n-oo to
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In this way we find

(3.13)

(3.14)

Substituting this expression into equation (3.9) and thence into equation (3.6) gives an
expression for Nt/>,,(t) valid as far as terms which are o(1/n4

).

As a check this expansion has been evaluated for a particular cooling tower and the
value compared with the direct numerical solution of equation (3.7). The relevant para­
meters are a = 84 ft, b = 209·661 ft; the free edge is at t = to = -0,2787265 rad and the
tower is under a loading for which P,,(t) = Ilbf/ft2

. The expansion for Nt/>lOO(t), omitting
terms which are o(1/n4

), at t = 0·9098175 rad gives the value 2252'15Ibf/ft whereas the
value computed by a Runge-Kutta procedure is 2252·14Ibf/ft.

The essential behaviour of Nt/>" is brought out by examining merely the leading terms
in the expansion. We have, from (3.6) and (3.9),

(X3(t) (X(t)(X2(tO) sec2 t o
N t/>n(t) '" -b-P,,(t) - b -2-Pn(tO) cos n (t - to)'

a a sec t

It is apparent that, for each fixed t -:f. to, N t/>n(t) does not approach a limiting value as n -t 00

but rather oscillates between two fixed values which depend on t and whose arithmetic
mean is (X3(t)P,,(t)/ab = - r 1(t)P,,(t). On the other hand N t/>n calculated on the bending
theory [2], for the same hyperboloid with the same normal loading Pn(<p) cos nO and with
one edge free and one clamped, appears to satisfy the relation

N",,,(t) -t 0 as n -t 00

for each fixed t.

4. THE GENERAL SHELL OF REVOLUTION OF NEGATIVE
GAUSSIAN CURVATURE

(3.15)

In this section we consider the general case when Nt/>" is defined by equations (2.8),
(2.9) and show how to obtain the appropriate asymptotic expansion. Since an examination
of the leading term of the expansion suffices to show that the behaviour of Nt/>" described
in Section 3 is not peculiar to the hyperboloid but occurs in the general case, we derive
here only the leading term. Subsequent terms in the expansion can be determined, if
required, by a systematic procedure which is described but we do not produce them
explicitly.

In view of the form of equation (2.8) and of the conditions (2.9) it is convenient to
represent N"'" in terms of a Green's function G,,(<p, <Po) defined as the solution of the homo­
geneous equation

(4.1)
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with initial values
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(4.2)

The representation is [6]

N",n(¢) = -r1(¢0)cot¢oPn(¢0)Gn(¢,¢0)

f'" (n
2
r

2
(ef>')p. (ef>') )

+ Gn(¢, ef>') r (¢') sin;¢' + fi¢') d¢',

"'" 2

(4.3)

where the first term is the solution to the homogeneo,us equation corresponding to (2.8)
with initial values (2.9) and the second term is the solution to the inhomogeneous equation
(2.8) with zero initial values. Once the asymptotic behaviour of Gn as n -4 00 has been
determined the asymptotic behaviour of N",. can be deduced from (4.3). The asymptotic
behaviour of Gn will be found by using Liouville-Green or (WKB) techniques [7].

Since condition (2.6) holds we can define the real indefinite integral

and seek an asymptotic expansion for Gn of the form

ao A
Gn(¢, ¢o) - cos n[s(¢)-s(¢o)] L: --;.(¢, ¢o)

r=O n
00 B

+sin n[s(¢)-s(¢o)] L: -;(¢, ¢o)·
r=O n

(4.4)

(4.5)

In order to determine the functions A" B, we substitute from (4.5) into (4.1), equate to zero
the coefficients of cos n[s(¢)-s(¢o)], sin n[s(¢)-s(ef>o)] and then compare coefficients of
inverse powers of n to find the equations

dAo dF
def> + def>Ao = 0

dAr dF
d¢ +d¢Ar-L(Br- 1 ) = 0,

where the function F is the indefinite integral

r ~ 1

r ~ 1

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)



An asymptotic solution to the membrane equations for shells of revolution of negative Gaussian curvature 223

and L is the operator

(4.13)

(4.12)

(4.11)

(4.14)

(4.15)

1 (d2 d )
L = 2ds/de/> de/>2 +11 de/> +12 .

The initial conditions at e/> = e/>o are found to be

Ar(e/>o, e/>o) = 0, r ?': 0

Bo(e/>o, e/>o) = 0

1 (dAo )
B 1(e/>0,e/>0) = ds(e/>o)/de/> 1- de/> (e/>o,e/>o)

B (,I,. ,1,.) = dAr- 1(e/>0, e/>o)/de/>
r '/'0' '/'0 ds(e/>o)/de/>' r ~ 2.

Equations (4.6H4.9) and the initial values (4. 12H4.15) enable us to determine the A" Br

by forward integration of first order ordinary differential equations. In fact (4.6), (4.7) and
(4.12) imply

(4.16)

whilst (4.8) and (4.13) imply

(4.17)

Also (4.9) and (4.14) give

B (,I,. ,I,. ) _ 1 F(4)ol-F(4>l
1 ,/" '/'0 - ds(e/>o)/de/> e .

In general, for all r ?': 2, equations (4.7), (4.9) integrate to give

Ar(e/>, e/>o) = e- F(4)lS4> eFWlL[Br_l(e/>')] de/>'
4>0

B (,I,. ,I,. ) dAr(e/>o, e/>o)/de/>eF(4)ol-F(4>)_e- F(4>l f4> FWlL[A (,1,.')] d,l,.'
r '/', '/'0 = ds(e/>o)/de/> 4>0 e r- \ '/' '/'

(4.18)

(4.19)

(4.20)

and all the A r , Br can be found from these relations.
The leading term in the expansion of the Green's function is thus

(4.21)

(4.22)

A knowledge of the leading term allows us to determine the leading term in the asymptotic
expansion of N4>". We find from (4.3) that for large n

f
4> 2(,1,.') FWlP (,1,.')N e-F(4)l rl '/' e ,,'/'. "

4>" '" n 4>0 [-r\(e/>')r2ie/>')]t sin e/>' sm n [s(e/»-s(e/»] de/>.
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On using (4.4) it follows that (4.22) can be written as

(4.23)

and on integrating (4.23) by parts and using the Riemann-Lebesgue Lemma again we see
that

N4>. ~ e-I'(4)l[-rl(</>') eFWlp.(</>') cos n [S(</»-S(</>')D::::
o

'

Thus the leading term in the expansion for N 4>. is

N4>. ~ -r l (</>)p.(</>)+eF(4>ol-F(4>lr l (</>o)p.(</>o) cos n [s(</»-s(</>o)]· (4.24)

Once again, in this general case, the essential feature of the asymptotic expansion is
that, for each fixed </> > </>0' N 4>.(</» does not tend to a limit as n-HX) but instead its values
oscillate about the mean value -rl(</>)p.(</>).

It will be observed that the discussion of the hyperboloid presents simplifications when
discussed in terms ofthe independent variable t = t(</» in part because, to within an undeter­
mined additive constant, t(</» == s(</». That this is so is seen by noting that equations (3.3),
(3.5) and the definition (4.4) of s(</» imply

ds [ -rl(</»ri</»]t dt
d</> - r2(</» sin </> = d</>'

Without much labour the leading term (3.14) in the special case can be identified with the
leading term (4.24) in the general case.
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Resume-Ce rapport examine la theorie de membrane de J'equilibre d'une couche elastique de revolution a
courbure de Gauss negative, ayant un bord libre et sujette aun chargement normal P.(4J) cos nO, OU 0 est J'angle
meridional, 4J est un parametre angulaire Ie long des lignes meridiennes et n est un entier. La dependance asymp­
totique sur n, comme n -> 00 des resultantes de contrainte aun point fixe de la couche est determinee analytique­
ment pour former une base de comparaison avec la theorie complete de flexion. Le cas particulier d'un hyper­
boloide a feuiIle simple est examine en details.
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Zusammenfassung-Diese Arbeit untersucht die Membranentheorie des Gleichgewichtes elastischer Drehungs­
schalen mit negativer Gauss'scher Krtimmung, mit freiem Ende und unter Normal-last p.(tP) cos nO; wobei (J

den Meriodonalwinkel, tP einen Winkelparameter entlang den Meridianlinien und n eine ganze Zahl darstellen.
Die asymptotische Abhangigkeit von n, in der Form n --. 00, desSpannungslinien in einem festen Punkt der
Schale wird analytisch bestimmt, um als Vergleich mit der vollen Biegungstheorie zu dienen. Der besondere Fall
eines Einzelplatten-Hyperboloides wird genau untersucht.

A6CTpaKT-3Ta CTaTbH HCCJIeAyeT MeM6paHHylO TeopHIO paBHOBeCHH 3JIaCTHqecKoii: 060JIOQKH o6opoTa
oTpHuaTeJIbHoii: raycoBCKolt KpHBH3Hbi co cBo6oAHbiM KpaeM H npH YCJIOBHH HOpMaJIbHOro HarpylKeHHH
P.(q,) cos nO, rAe O-MepHAHOHaJIbHblii: yrOJI, q,-yrJIOBoii: napaMeTp BAOJIb JIHHHlt MepHJ\HaHa H n-ueJIoe
'1HCJIO. ACHMnTOTHQecKaH 3aBHCHMOCTb OT n, TaK KaK n-+ 00, pe3YJIbTaHTOB HanpHlKeHHH y 3aKperIJICHHorO
nyHKTa 060JIO'lKH onpeAeJIHeTCH aHaJIHTHQeCKH, QTo6bl AaTb OCHOBaHHe AJIH cpaBHeHHH CTeopHelt 1I0JIHOrO
H3rH6aHHH. )].eTaJIbHO paCCMaTpHBaeTCH OC06bllt CJIYQaii: OAHOnOJIOCTHOro rHllep6oJIOHAa.


