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AN ASYMPTOTIC SOLUTION TO THE MEMBRANE
EQUATIONS FOR SHELLS OF REVOLUTION OF
NEGATIVE GAUSSIAN CURVATURE

W. A. Day*

Mathematics Division, National Physical Laboratory, Teddington, England

Abstract—This paper examines the membrane theory of the equilibrium of an elastic shell of revolution of
negative Gaussian curvature, with a free edge and subject to a normal loading P,(¢) cos nf, where 8 is the
meridional angle, ¢ is an angular parameter along meridian lines and # is an integer. The asymptotic dependence
upon n, asn — oo, of the stress resultants at a fixed point of the shell is determined analytically to provide a basis of
comparison with the full bending theory. The particular case of the single sheet hyperboloid is examined in detail.

1. INTRODUCTION

ANALYSIS of the stresses in an elastic shell of revolution has important engineering applica-
tions, a particular example being the construction of concrete cooling towers in the shape
of single sheet hyperboloids. It is well known [1] that the equilibrium of an elastic shell is
described by an eighth order system of linear partial differential equations but it is a con-
siderable task to solve boundary value problems for this system. Consequently approximate
methods are often used to obtain solutions for engineering design purposes. One of the most
common approximations—the membrane approximation-—ignores the couple resultants
altogether and by so doing leads to a second order system of linear equations. The reduction
in order, from eighth to second, necessarily results in the loss of boundary conditions but
the hope is that, away from certain narrow ‘“‘boundary layers’” where bending effects are
needed to satisfy the “lost”” boundary conditions, the membrane description is adequate.

Recently solutions of the full eighth order system and the second order membrane
system have been compared [2] for hyperboloids of revolution with one edge free and one
edge clamped and subjected to normal wind loadings of the form

Y P(¢)cos nb,

where 0 is the meridional angle, ¢ is an angular parameter along meridian lines and n is
an integer. The linearity of the equations and the homogeneity of the boundary conditions
together imply that the state of stress is a superposition of the stresses due to each separate
harmonic P,(¢) cos nf of the loading. It was found that for a normal loading P,(¢) cos nf
and “small” values of n the bending and membrane theories are in good agreement but that
for sufficiently large values of n the two solutions are markedly dissimilar and the membrane
approximation cannot then be considered adequate. This conclusion is, perhaps, not
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surprising in view of the fact that the couple resultants, which might be expected to play an
important réle for large », are neglected by the membrane theory. However, the precise
asymptotic behaviours of the bending and membrane solutions for large n and the way in
which they differ are not so obvious.

In this paper the behaviour of the second order membrane system is examined analy-
tically for shells having a free edge. A normal loading P,(¢)cos nf is assumed and the
asymptotic dependence of the solution upon the harmonic number n as n — cc is deter-
mined firstly for a hyperboloid of revolution, which introduces certain simplifying features,
and secondly for a general shell of revolution of negative Gaussian curvature. The asymp-
totic expansion derived for the hyperboloid is shown to give excellent agreement with the
results of a direct numerical solution of the differential equations. The expansion confirms
that, on the membrane theory, the stress resultants at a fixed point of the hyperboloid do
not approach a limiting value as n — oo but oscillate between two fixed values. In contrast
the calculations in [2] indicate that on the bending theory the stress resultants approach
the value zero as a limit. The analysis for the general shell shows that the oscillatory
asymptotic behaviour of the membrane solution is not particular to the hyperboloid but
characterizes the solution for any shell of revolution of negative Gaussian curvature.

2. FORMULATION OF THE PROBLEM

We take a system of rectangular Cartesian coordinates (x, y, z) and suppose the middle
surface of the shell generated by revolving the arc

x = x(¢) > 0, z = z(¢), O<¢o<p<d,<n (2.1

about the z-axis. The parameter ¢ is defined as follows: if Q(¢) is a point of the arc then ¢
is the angle which the normal to the arc at @ makes with the positive direction of the z-axis.
It is assumed that

d?x/dz? > 0 (2.2)

for all ¢ in ¢, < ¢ < ¢, so that the surface of revolution then has negative Gaussian
curvature. The free edge of the shell can, without essential loss of generality, be taken to
be the circle ¢ = ¢,.

The membrane equations of equilibrium for the stress resultants Ny, No, Nyg = Ny,
have been given by Timoshenko and Woinowsky—Krieger [3]. They are

¢ . N
(,T(Z(rz sin N y)+r, WM*H cos pN, = 0

é . oN
(,}—(!-)(r2 sin <;SN<,,(,)+r1—(,/#+r1 CoSPNy =0 (2.3)
roNy+riNg+rir,P,cosnd =0,

where r,(¢), r5(¢) are the principal radii of curvature of the shell. The boundary conditions
at the free edge are

N¢(¢o) =0, Nqso(d’o) = 0. (2~4)
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It can be verified that the characteristic equation of the system of two first order equa-
tions for N, and N 44, which are obtained by eliminating N, is
rir, d@? +r3sin?¢ d6* = 0. (2.5)

Moreover, the assumption (2.2) implies that the shell has negative Gaussian curvature,
that is to say

ri@)ra(¢) <0 (2.6)

for all ¢ in ¢4 < ¢ < ¢,. Consequently the system has real distinct characteristics and is
hyperbolic. The form of the conditions (2.4) implies that we have to solve an initial value
problem and the hyperbolic character of the equations then ensures that this problem is
well posed.

To solve (2.3) we write

N, = N,,(¢) cos nb, Ng4o = N 4on() sin nb, Ng = Ny,(¢) cos nb. (2.7)

Substituting from (2.7) into (2.3) and eliminating N 44,,, Ny, produces a second order ordin-
ary differential equation for N, of the form
d*N,,
d¢?

dN¢'l
d¢

where f1, f, are determined by r,, r, alone and f; is determined by r,, r, and the prescribed
P,. The conditions (2.4) become

n’r?
a2
r, sin“¢

—n?rr,
r3 sin?¢

+ f1(d)

-+

+fz(d>)) Ny = P, +13(¢), (2.8)

dN
Nyu(¢o) = 0, ﬁ(d’o) = —r1(¢o) cot §o Po(o). (2.9)

Our objective is to determine the asymptotic behaviour of N, (¢) as n— co for sufficiently
smooth r(¢), r,(¢), P(¢) subject only to the condition (2.6).

3. THE HYPERBOLOID

For the particular case of the hyperboloid of revolution it is simpler to take advantage
of a transformation described by Martin and Scriven [4] rather than use equations (2.8),
(2.9) directly.

We consider the hyperboloid obtained by revolving the arc

x3ja?=z2* =1 x=0 (3.1)
about the z axis. A convenient parametric representation of the hyperboloid is
Xx = asectcosf, y = asectsin 6, z = —btant, (3.2)
where the parameter ¢ is related to ¢ by the formulae
aft)sin ¢ = bsect, w?(t) dgp/dt = —absect, (3.3)
the function « being defined by
a(t) = (a® tan2t + b? sec?t)t. ' (3.4)
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Considered as functions of ¢, the principal radii of curvature are
r(t) = —a(t)/ab, r,(t) = ao(t)/b. (3.5)
On making the transformation

«(t)

Not) = 22
onll) a sec?t

R(t). (3.6)

we find that equation (2.8) reduces to the equation

d’R, n’a? sec’t a* d|sint
SM iR, = e P — e —— 3.7
gz T b " b dilcost ) 3.7
and the conditions (2.9) to the conditions
dR,{to) a’sint,
Rn(to) O’ dl b COSatO n( 0) ( )

where oft,) sin ¢, = bsect,. The function R, can be determined immediately from equa-
tions (3.7) and (3.8) in the form

a?(t) sect a®(ty) sec’ty

Rn(t) - b Pn(t) h Pn(tO) cosn (t - lO)
2sint d [a?(t) sec?t Pt) 1 (39
a’sint, o(t) sec’t P .
—_— — - t—1to)+S,(t
{bcos3topn(t0)+dt b ),—_-,0 }n Slnn( 0)+ n( )
where S,(t) satisfies the equation
dzs, a® d [sint d? (az(t) sec’t P,,)
S S, = o | By S
dt b dt\cos”t dt b
= T(t), say, (3.10)
together with the initial conditions
ds (¢
S,ty) =0, ——('1'(791 =0 (3.11)

The homogeneity of the initial conditions (3.11) now enables us to express the solution of
(3.10) in the form

n
to

S,(f) = lj‘ T(t)sinn(t— t)dr. (3.12)

An asymptotic expansion for S,, and hence for R,, valid as n — oo can be deduced by
expanding the integral (3.12) by parts and using the Riemann-Lebesgue Lemma [5]
namely, that provided the function g is integrable

t ¢
lim| g(t)sinnt'dt’ = lim{ g(t)cosnt'dt’ =0.

o0 Vg n— o v In
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In this way we find
dT (to)

dt
1 )
n '

Substituting this expression into equation (3.9) and thence into equation (3.6) gives an
expression for N,,(t) valid as far as terms which are o(1/n*).

As a check this expansion has been evaluated for a particular cooling tower and the
value compared with the direct numerical solution of equation (3.7). The relevant para-
meters are a = 84 ft, b = 209-661 ft; the free edge is at t = t, = —0-2787265 rad and the
tower is under a loading for which P,(r) = 11bf/ft?>. The expansion for N oo(), omitting
terms which are o(1/n%), at t = 0-9098175 rad gives the value 2252-15 1bf/ft whereas the
value computed by a Runge-Kutta procedure is 225214 1bf/ft.

The essential behaviour of N, is brought out by examining merely the leading terms
in the expansion. We have, from (3.6) and (3.9),

1 1
848 = (T = Tlto)cos n(t —to)) ——3 n(t—to)

(3.13)
1 [d2T(t) d2T(t,)

n* |\ dr? dr?

cosn(t —to)) +0

3 2 2
Nont) ~ £ 0 p - 22 o) 500

P,(to) cos n (t —to). (3.14)

Itis apparent that, for each fixed t # t,, N,(t) does not approach a limiting value asn — oo
but rather oscillates between two fixed values which depend on ¢ and whose arithmetic
mean is oa*(t)P,(t)/ab = —r,(t)P(t). On the other hand N, calculated on the bending
theory (2]}, for the same hyperboloid with the same normal loading P,(¢) cos nf and with
one edge free and one clamped, appears to satisfy the relation

Neft) >0 as n— oo (3.15)

for each fixed t.

4. THE GENERAL SHELL OF REVOLUTION OF NEGATIVE
GAUSSIAN CURVATURE

In this section we consider the general case when N, is defined by equations (2.8),
(2.9) and show how to obtain the appropriate asymptotic expansion. Since an examination
of the leading term of the expansion suffices to show that the behaviour of N, described
in Section 3 is not peculiar to the hyperboloid but occurs in the general case, we derive
here only the leading term. Subsequent terms in the expansion can be determined, if
required, by a systematic procedure which is described but we do not produce them
explicitly.

In view of the form of equation (2.8) and of the conditions (2.9) it is convenient to
represent N, in terms of a Green’s function G,(¢, ¢,) defined as the solution of the homo-
geneous equation

d2

RS, (rzs +f2(¢))6 =0 @)
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with initial values

dG
——(¢o, $o) = 1. (4.2)

Gn(d’o» (i’o) =0 dd)

The representation is [6]

Nyn(@) = —r1(¢o) cOt @o Po¢0)G(@. ¢o)

¢ 2.2 P
+L) 6.6, 1O | 149 ay, @3)

where the first term is the solution to the homogeneous equation corresponding to (2.8)
with initial values (2.9) and the second term is the solution to the inhomogeneous equation
(2.8) with zero initial values. Once the asymptotic behaviour of G, as n — oo has been
determined the asymptotic behaviour of N, can be deduced from (4.3). The asymptotic
behaviour of G, will be found by using Liouville-Green or (WK B) techniques [ 7].

Since condition (2.6) holds we can define the real indefinite integral

¢ ’ ’
s(¢) :J [—r1(¢)r2(¢)]%d¢’ (4.4)

r,(¢') sin ¢’

and seck an asymptotic expansion for G, of the form

G, o) ~ cos nlsig)—s(ol] T 26, 90)
e (4.5)

+sin n[s(¢) — s(¢y)) Z 717’((15, ®o)-
r=0
In order to determine the functions 4,, B, we substitute from (4.5) into (4.1), equate to zero
the coefficients of cos n[s(¢)—s(¢y)], sin ns{¢) —s(¢y)] and then compare coeflicients of
inverse powers of n to find the equations

‘Z’:}O 35) =0 (4.6)
‘2“; %A -LB,_)=0, r>1 4.7)
%%9 3—230 =0 (4.8)
‘;Z +323 +L(A,_) =0, r=>1 (4.9)

where the function F is the indefinite integral

ds

Fig) = f 1) 89 + 3 0e 5 (410
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and L is the operator

1 d? d

= *—2ds/d¢(d—&:+f1@+f2) 4.11)
The initial conditions at ¢ = ¢, are found to be
Ao, Do) = 0, r=0 (4.12)
Bo(¢o, o) = 0 4.13)
__ 1 _d4,

B.($or do) = m(l 3g o ¢o)) (4.14)

_ d4,_(¢o, 9o)/de
B (o, Po) = soyde T2 2. (4.15)

Equations (4.6)~(4.9) and the initial values (4.12}(4.15) enable us to determine the 4,, B,
by forward integration of first order ordinary differential equations. In fact (4.6), (4.7) and
(4.12) imply

Ao, do) = Ay(¢, do) = 0. (4.16)
whilst (4.8) and (4.13) imply
By(¢, o) = 0. (4.17)
Also (4.9) and (4.14) give
= 1 Fi¢o)— F($)
By(¢, do) IGo/ds° : (4.18)
In general, for all r > 2, equations (4.7), (4.9) integrate to give
Al 90 = e (" LB, (9] do #.19)

_44/(@0, 0)/dP rig0)-rier_
ds(¢o)/de

and all the A4,, B, can be found from these relations.
The leading term in the expansion of the Green’s function is thus

¢
B, ¢0) = ro [ FOLA,_(@)de @20)

G o) ~ Grgrg e sinn ()=o)
which, by (4.4), is
r{@y) sin ¢ el
G (o, ~ 2\¥Yo O oFldo)—F(¢)_ _ . ;
9 60) ~ (T2 IO €T sinn[s() o) @21)

A knowledge of the leading term allows us to determine the leading term in the asymptotic
expansion of N,,. We find from (4.3) that for large n

¢ 20 1 &F @D (o’
N, ~ ne-F@ ri(¢)) eF@P(¢")
e j oo [—T1(@)r1(¢)]F sin ¢

-sin n [s(¢)—s(¢")] do". 4.22)
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On using (4.4) it follows that (4.22) can be written as

¢

, d

Ngp~e " “’”f —ry(¢) e’ ’Pn(cb’)d?,{cos n[s(¢)—s(d)1} d¢’, (4.23)
0

and on integrating (4.23) by parts and using the Riemann-Lebesgue Lemma again we see

that

Now ~ 1@ [=r,() " B(¢) cos n[s(9)—ste)]]) *

Thus the leading term in the expansion for N, is
Nyp ~ =11(D)P(D)+ 7P ™ Pr (¢o)P,(¢o) cos 1 [s(¢)—s(¢o)]- (4.24)

Once again, in this general case, the essential feature of the asymptotic expansion is
that, for each fixed ¢ > ¢, Ng,(¢) does not tend to a limit as n— oo but instead its values
oscillate about the mean value —r,(¢)P,(¢).

It will be observed that the discussion of the hyperboloid presents simplifications when
discussed in terms of the independent variable t = t(¢)in part because, to within an undeter-
mined additive constant, t(¢) = s(¢). That this is so is seen by noting that equations (3.3),
(3.5) and the definition (4.4) of s(¢) imply

s _[=n@n@l _ at
d¢ ~ ry(d)sin &  d¢

Without much labour the leading term (3.14) in the special case can be identified with the
leading term (4.24) in the general case.
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Résumé—Ce rapport examine la théorie de membrane de I’équilibre d’une couche élastique de révolution a
courbure de Gauss négative, ayant un bord libre et sujette 4 un chargement normal F,(¢) cos nf, ou 6 est I’angle
méridional, ¢ est un paramétre angulaire le long des lignes méridiennes et » est un entier. La dépendance asymp-
totique sur n, comme # — oo des résultantes de contrainte 4 un point fixe de la couche est déterminée analytique-
ment pour former une base de comparaison avec la théorie compléte de flexion. Le cas particulier d’un hyper-
boloide a feuille simple est examiné en détails.
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Zussmmenfassung—Diese Arbeit untersucht diec Membranentheorie des Gleichgewichtes elastischer Drehungs-
schalen mit negativer Gauss’scher Kriimmung, mit freiem Ende und unter Normal-last P,(¢)cos nt); wobei 6
den Meriodonalwinkel, ¢ einen Winkelparameter entlang den Meridianlinien und » eine ganze Zahl darstellen.
Die asymptotische Abhingigkeit von n, in der Form n — oo, des Spannungslinien in einem festen Punkt der
Schale wird analytisch bestimmt, um als Vergleich mit der vollen Biegungstheorie zu dienen. Der besondere Fall
eines Einzelplatten-Hyperboloides wird genau untersucht.

AGCTPaKT—3Ta CTaThA HCCNIEOYyeT MeMOpPaHHYIO TEOPHIO DaBHOBECHS 3facTHueckoit oGonouku oboporta
OTPHMLATENBHON TrayCOBCKON KPMBM3HBI CO CBODOOHBIM KPAEM M IPH YCIIOBHM HOPMAJIbHOI'O HArpyXeHWS
P.($) cos nfd, rne —mepuamMoHansHeIi Yyron, ¢—yraoBoi NapaMeTp BAONb JIMHANA MEPUANAHA U H—LENOe
YHCJI0. ACHMIOTOTHYECKAA 3aBUCUMOCTb OT A, TaK KaK n—> o0, pe3yJbTAHTOB HANPSHKEHNS Y 3aKPEIUIEHHOTO
TIyHKTa O0OMIOUKH ONpelesifAeTCa aHATUTHYECKH, YTOObI aTh OCHOBAHME 1T CPABHEHUS ¢ TEOPHENR MOTHOrO
u3rnbanus. JeTabHO paccMaTpHBAeTCsl 0COORIA Cilyyait OOHOMONIOCTHOro runepboaouma.



